张汉君导师主页
基本信息
姓名: 张汉君
职称: 教授
单位电话: 13874899359
电子信箱: hjz001@xtu.edu.cn
办公室: 统计学系
个人主页:
http://zhanghanjun.weebly.com
个人简介

 19887月获博士学位,19957月破格晋升为教授,1999年由铁道部专家组授予博士生导师资格。2001年至2007年在著名的澳大利亚Queensland大学担任中心研究员,曾多次到英国、德国、加拿大、法国、香港等国家和地区的著名学府进行合作研究与学术交流.

科研项目

 2014.01-2017.12    马尔可夫过程拟平稳分布及相关问题,国家自然科学基金,主持

2009.012011.01   拟平稳分布及它们的吸引域问题,湖南省自然科学基金,主持。

2008.032013.04   拟平稳分布及它们的吸引域问题,湘潭大学科研启动基金,主持.

2005.10—2007.12   遍历马氏链的收敛速度(No2005001991)12,000澳元,澳大利亚昆士兰大学,独立完成。

2001.01—2003.12    Modeling explosive random processes (NoA00104575)160,000澳元,澳大利亚国家科学研究基金,合作者:Prof. Phil PolletProf. Anyue Chen

2000.01—2001.12           马氏过程、半马氏过程及其在风险模型中的应用,湖南省自然   科学基金,主持。

2000.01—2001.12    马氏骨架过程及其应用(No19871006),国家自然科学基金,主要参加者。

1995.01—1996.12    可逆Q过程,湖南省自然科学基金,主持。

1991.01—1994.12    Q-矩阵问题,国家自然科学基金,主要参加者。

成果获奖

2004.06     ARC Centre Fellow  澳大利亚ARC中心

2000.09     获铁道部“中青年有突出贡献专家”称号

1998.10     湖南省科学技术进步一等奖(共八人,排名第三)

1998.05     湖南省教育委员会科技进步一等奖,(共八人,排名第三)

1995.07     全国优秀科技图书二等奖(共七人,排名第三)

1988.07     国家教育委员会科学技术进步二等奖(共六人,排名第五)

 

代表性学术成果

1.Hanjun Zhang and Guoman He (2016) , Domain of attraction of quasi-stationary
distribution for one-dimensional diffusions,  Front. Math. China , 11(2): 411–421

2. Hanjun Zhang and Guoman He (2016)  Existence and construction of quasi-stationary distributions

forone-dimensional diffusions, J. Math.Anal.Appl.434,171–181

3.Hanjun Zhang and Yixia zhu (2013), Domain of attraction of the quasi-stationary

distribution for birth and death processes, J. Appl.Probab,.50(1): 114-126.

4Hanjun Zhang and Yixia zhu (2013), Domain of attraction of the quasi-stationary

distribution for the liner birth and death process with killing, Chinese Journal of  Applied .Probability and Statistics,.Vol.29 No.6  561-569.

5Hanjun Zhang and Wenbo Liu (2012), Domain of attraction of the quasi-stationary

distribution for linear birth and death processes, J. Math. Anal. & Appl. 385677-682.

6. Wenbo Liu, Hanjun Zhang (2011), Quasi-stationary distributions in linear birth and death processes, Journal of Mathematics Research, Vol.3 No.1, p27-32.

7. Enwen ZhuHanjun Zhang and Jiezhong Zou (2010),  Asymptotical mean square

stability of cohen-grossberg neural networks with random delay, Journal of Inequalities and Applications, Vol 2010, Article ID:247587,13page.

8.Yuanyuan Liu, Hanjun Zhang and Yi Qiang Zhao (2010), Subgeometric eriodicity  for continuous-time Markov Chains, J. Math. Anal. & Appl. , Vol.368, No.1, p178--189.

9.Enwen Zhu, Yong Wang,Yueheng Wang, Hanjun Zhang,and Jiezhong Zou (2010),Stability Analysis of Recurrent Neural Networks with Random Delay and Markovian Switching Journal of Inequalities and Applications,  Volume 2010, Article ID 191546, 12 pages.

10. Enwen ZhuHanjun Zhang, Gang Yang, Zaiming Liu, Jiezhong Zou and Shaoshun

Long (2010), Ergodicity of a Class of Nonlinear Time Series Models in Random Environment Domain, Acta Mathematicae Applicatae Sinica, English Series, Vol.26, No.1 p159-168.

11. Chen, A., Pollett, P.K., Li, J. and Zhang, H. (2010) Markovian bulk-arrival and bulk-service queues with state-dependent control. Queueing Systems 64, 267-304.

12. Anyue Chen, Phil Pollett, Junping Li and Hanjun Zhang (2010),  Uniqueness,

extinction and exclusivity of generalised Markov branching processes with pairwise interaction, Methodology and Computing in Applied probability12, 511-531.

13..Enwen Zhu, Hanjun Zhang, Yong Xu, Yueheng Wang, and Jiezhong Zou(2009)Mean square stability of nonlinear systems with random delay and markovian jump parameters. Intelligent Computing and Intelligent Systems, 2009. ICIS 2009.

14. Yuanyuan Liu, Hanjun Zhang and Yi Qiang Zhao (2008), Computable Strongly

Ergodic rates of Convergence  For Continuous –Time Markov Chain, The  ANZIAM. Journal, Vol 49, 463-478.

15. David Sirl, Hanjun Zhang and Phil Pollett (2007), Computable Bounds for the Decay Parameter of a Birth-Death Process, J. Appl. Prob. 44, 475-490.

16. Phil Pollett, Hanjun Zhang and Ben Cairns(2007),  A note on extinction times for the general birth, death and catastrophe process,  J. Appl. Prob. 44, 566-569.

17. Anyue Chen, Phil Pollett, Junping Li and Hanjun Zhang (2007), A Remark on the Uniqueness of Weighted Markov Branching Processes, J. Appl. Prob. 44, 279-283.

18. Xiang Lin and Hanjun Zhang (2006), Convergence of a branching process, Acta Mathematica Scientia (6),897-905.

19. Zhenting Hou, Yuanyuan Liu and Hanjun Zhang (2005), Subgeometric rates of convergence for a class of continuous time Markov processes, J.  Appl. Prob. 42, 698-712.

20. Brenton Gray, Phil Pollett and Hanjun Zhang (2005), On the existence of uni-instantaneous Q-processes with a given finite -invariant measure, J. Appl. Prob. 42,713-725.

21. Anyue Chen, Phil Pollett, Hanjun Zhang and Ben Cairns (2005), Uniqueness criteria for continuous-time Markov chains with general transition structure, Adv. Appl. Prob. 37, 1056- 1074.

22. Anyue Chen, Phil Pollett, Hanjun Zhang and Junping Li (2004), The collision branching process, J. Appl. Prob. 41,1033-1048

23. Phil Pollett, Hanjun Zhang(2004),  Existence and Uniqueness of Q-Processes with a Given Finite -Invariant  Measure. In (Eds. Philip K. Pollett and Peter G. Taylor) Festschrift in Honour of Daryl Daley, Australian & New Zealand Journal of Statistics, Vol.46 No.1, 113-120.

24. Anyue Chen, Hanjun Zhang, Kai Liu and Keith Rennolls(2004), Birth-death Q-Processes with disaster and instantaneous resurrection, Adv. Appl. Prob. Vol.36, 267-292.

25. Xiang Lin, Hanjun Zhang and Zhenting Hou(2003), Invariant distribution of jump process, Advances in Mathematics (in Chinese) 32 (4), 466--472.

26. Qunying Wu and Hanjun Zhang(2003), Generalized birth and death Q-Matrices, J. Sys. Sci. & Math. Scis. (in Chinese) 23: 4, 517--528.

27. Hanjun Zhang, Qixiang Mei, Xiang Lin and Zhenting Hou(2002), Convergence Property of Standard Transition Functions. In (Eds Zhenting Hou, Jerzy A. Filar and Anyue Chen) Markov Processes and Controlled Markov Chains, Kluwer, 57-67.

28. Xiang Lin, Hanjun Zhang and Zhenting Hou(2002), -invariant distribution of Q-process, Acta Mathematician Applicatae Sinica. 25 (4), 694--703.

29. Anyue Chen, Hanjun Zhang and Zhenting Hou(2002), Feller transition functions, resolvent decomposition theorems, and their application in unstable denumerable Markov processes. In (Eds Zhenting Hou, Jerzy A. Filar and Anyue Chen) Markov Processes and Controlled Markov Chains, Kluwer, 20-40.

30. Hanjun Zhang, Xiang Lin and Zhenting Hou(2002), Invariant Distributions of Q-Processes (II).ChinaAnn. Math. (in Chinese) 23A: 3, 361--370.

31. Hanjun Zhang, Anyue Chen, Xiang Lin and Zhenting Hou(2001),  Strong Ergodicity of Monotone Transition Functions, Stat. & Prob. Letters. 55,63--69.

32. Hanjun Zhang, Xiang Lin and Zhenting Hou(2001),  Invariant Distributions of Q-Processes (I), Chin. Ann. Math.(in Chinese) 22A: 3, 323--330.

33. Hanjun Zhang, Xiang Lin and Zhenting Hou(2000),  Uniformly Polynomial Convergence for the Standard Transition Functions, Chin. Ann. Math.(in Chinese) 21A: 3, 351--356.

34. Anyue Chen and Hanjun Zhang(1999), Existence, Uniqueness and Constructions for Stochastically Monotone Q-Processes, SEAM. Bull. Math. 23(4): 559--583.

35. Anyue Chen and Hanjun Zhang(1999), Stochastical Monotonicity and Duality for Continuous Time Markov Chains with General Q-Matrix, SEAM. Bull. Math. 23(3): 383--408.

36. Hanjun Zhang and Anyue Chen(1999),  Stochastical Comparability and Dual Q-Functions, J. Math. Anal. & Appl. 234: 482--499.

37. Hanjun Zhang(1996),  Criterion for the Existence of Q-processes with Two Instantaneous States,  Chin. J. Appl. Prob. Statis. (in Chinese) Vol.12 No.3, 182-- 194.

38. Hanjun Zhang(1995), Criterion for the Existence of Q-processes with Single Instantaneous State,  Chin. J. Appl. Prob. Statis. (in Chinese) Vol.11 No.2, 118--124.

39. Hanjun Zhang, Qing Ping, Liu and Zhen Ting Hou(1994), Stochastically monotone Q -processes.  Hunan Ann. Math (in Chinese ),Vol.14 No.1, 1--5.

40. Hanjun Zhang(1994), On Quantitive Theory of Generalized Kolmogorov Matrix,  Chin. J. Appl. Prob. Statis. (in Chinese)Vol.10 No.1, 18--24.

41. Hanjun Zhang(1994) Q-Matrices with Summable Instantaneous States, Chin. Ann. Math. (in Chinese) 15A: 3, 111--118.

42. Anyue Chen and Hanjun Zhang(1992), Criterion for the Existence of Reversible Q-Processes with Single-Instantaneous State, Chin. J. Appl. Prob. Statis. (in Chinese)Vol.8 No.3, 234--241.

43. Hanjun Zhang(1992),  Criterion for Maximal Q-Process, Chin. Ann. Math.(in Chinese) 13A: 4, 442--450.

44. Anyue Chen and Hanjun Zhang(1987), Criterion for the Existence of Reversible Q-Processes, Acta Math. Sin., New series, Vol.3 No.2, 133--142.

45. Hanjun Zhang(1985), The birth, death process and its 0+-system, Economics and Mathematics (in Chinese) Vol. 2 : 2, 62--72.

 

 

个人参著

1. Zhenting Hou, Jiezhong Zou, Hanjun Zhang(1994), The Q-Matrix Problem for Markov Chains, Hunan Sci. Press. (in Chinese).

2. Zhenting Hou, Zaiming Liu, Hanjun Zhang(2000),  The Birth and Death Processes. Hunan Sci. Press.(in Chinese).